Grundlagen Computernetze


Prof. Jürgen Plate

Übertragungsmedien

Egal wie das Kabel letztendlich aussieht, gibt es bei allen Kabeln ein paar grundlegende Eigenschaften. Jeder Leiter hat einen gewissen Gleichstromwiderstand, der abhängt vom spezifischen Widerstand des Materials (r), vom Querschnitt des Leiters (A) und von seiner Länge (l):

       R = r*l/A

Für die Anwendung im Netz wesentlich wichtiger ist der Wechselstromwiderstand des Kabels. Wenn wir ein kurzes Leitungsstück betrachten, bildet die Leitung eine Induktivität L, die in Serie zum ohmschen Widerstand liegt. Die nebeneinanderliegenden Leiter und der Rückleiter bilden eine Kapazität C. Schließlich gibt es zwischen beiden Leitern noch einen sehr hohen Isolationswiderstand G. Man kann das Leiterstück also durch eine Ersatzschaltung wie im Bild annähern.

Das Kabel setzt sich dann aus vielen dieser kleinen Schaltungen zusammen, die hintereinandergeschaltet sind. Die obige Schaltung bildet ein Tiefpaßfilter, d. h. bei höheren Freqenzen wird das Signal immer weiter abgeschwächt. Mißt man den Wechselstromwiderstand eines Kabels indem man ein Wechselspannungssignal einspeist, erhält man den spezifischen Wellenwiderstand des Kabels. Beim Ethernet ist er auf 50 Ohm festgelegt. Die Grenzfrequenz ist erreicht, wenn die Ausgangsspannung 70% der Eingangsspannung erreicht hat. Die digitalen Signale, die auf das Netzwerkkabel geleitet werden, bilden auch eine (sehr oberwellenreiche) Wechselspannung.

Zu Beginn hat man sich beim Ethernet für Koaxialkabel entschieden. Sie bestehen aus einem äußeren Leiter, der einen innenliegenden Leiter vollständig umschließt und dadurch abschirmt. Die beiden Leiter sind durch einen Isolator elektrisch getrennt. Koaxkabel gibt es in verschiedenen Ausführungen, für das Ethernet werden Typen mit einem Wellenwiderstand von 50 Ohm verwendet. Die Konstruktion dieses Kabels ist aber nicht nur wegen der Abschirmung des inneren Leiters günstig, da sie noch einen anderes Phänomen der Hochfrequenztechnik ausnutzt: den Skineffekt. Bei sehr hohen Frequenzen fließt der Strom fast nur noch in einer dünnen Schicht an der Leiteroberfläche, während tiefer im Leiterinneren fast kein Strom mehr fließt.
Durch dieses Verhalten wirkt allein der Außenleiter des Koaxkabels genauso wie ein massiver Leiter gleichen Durchmessers. Deshalb ist die 'Füllung' des Leiters verzichtbar und ein 'Rohr' zu verwenden. Im Inneren dieses Rohres ist Platz für den zweiten Leiter. Da der Skineffekt auf Innen- und Außenleiter wirkt, läßt sich die Leitfähigkeit des kabels durch eine dünne Silberbeschichtung auf dem Innenleiter weiter erhöhen.

Seit einigen Jahren werden auch verdrillte Zweidrahtleitungen (10BaseT) oder Glasfaserleitungen verwendet.

Die Definition des physikalischen Kanals ist aber nur ein Teil der IEEE 802.3-Spezifikation. Der Standard beschreibt physikalische Übertragung, die auch unser Thema ist, und Zugriffsverfahren, die sogenannten Protokolle. Auf der physikalischen Ebene sind Bezeichnungen wie 10Base5, 10Base2 und 10BaseT von Belang. Entscheidend sind dabei drei Parameter:
die Übertragungsrate, das Übertragungsverfahren (Basis- oder Breitband; 'Base' oder 'Broad') sowie Aussagen zur räumlichen Ausdehnung. Zur Unterscheidung und Charakterisierung der einzelnen Übertragungsmedien wurde folgende Systematik für die Kabelbezeichnung entwickelt:

<Datenrate in MBit/s><Übertragungsverfahren><Max. Länge/100 m>

Auch der Kabeltyp kann unterschiedlich sein. Vom Koaxkabel über Glasfasern bis zu verdrillten Zweidrahtleitungen ist alles vertreten.

Token-Ring

Das Kabel beim IBM-Token-Ring (Typ 1) besteht aus zwei einzeln abgeschirmten Leitungen, die zusammen nochmals abgeschirmt sind. Die Übertragungsrate beträgt 4 oder 16 MBit/s, bei 4 MBit/s können maximal 260 Stationen angeschlossen werden. Der maximale Abstand zwischen einer Station und dem Ringleitungsverteiler beträgt 300 m, zwischen zwei Verteilern 200 m.

Standard-Ethernet, 10Base5

Im weiteren wollen wir aber nur auf die Ethernet-Verkabelung eingehen. Das Standard-Ethernet besteht aus dem, meistens gelb isoliertem, 50-Ohm-Koaxialkabel mit ca. 10 mm Durchmesser (10,3 mm bei PVC-Isolierung, 9,5 mm bei PEP). Ein Kabelsegment darf maximal 500 m lang sein. Im Mindestabstand von 2,50 m können Media Attachment Units (MAUs) gesetzt werden. Zu diesem Zweck sind auf dem Kabel Markierungen angebracht. Die Ursache für den vorgeschriebenen Mindestabstand liegt darin, daß man eine Beeinflussung der MAUs untereinander ausschließen wollte. Das Bild zeigt schematisch den Anschluß an das Kabel.

An einen MAU kann über ein maximal 50 m langes Transceiverkabel eine Ethernet-Station angeschlossen werden. Maximal 100 Stationen können an einem Kabelsegment hängen. Der Biegeradius darf 20 cm nicht unterschreiten. Das Kabel muß zur Vermeidung von Reflexionen an beiden Enden mit einem 50-Ohm-Widerstand (1 Watt) terminiert werden.

Der Transceiver im MAU wird über einen TAP angeschlossen, bei dem Mittelleiter und Schirm kontaktiert werden, ohne das Kabel - und damit den Datenfluß auf dem Netz - zu unterbrechen.

Bei einem Defekt im Transceiverkabel wird das Netz nicht beeinflußt; lediglich die betroffene Station ist von der Kommunikation getrennt. Die paarweise verdrillten Leitungen im Transceiverkabel werden über Differenztreiber angesteuert, auf Empfangsseite sitzen Differenzverstärker. Störungen können sich so nur gering bemerkbar machen.

Anbindung der Arbeitsplätze direkt an das Yellow-Cable

Zum Anschluß der einzelnen Arbeitsplätze an das Netzwerk benötigt man pro Arbeitsplatz den oben erwähnten MAU. Er stellt die Verbindung von Rechner über den AUI-Port mit dem Netzwerk her. Diese Vorgehensweise birgt allerdings einige Probleme (z. B. Netzlast, usw.). Es existieren strenge Verlegevorschriften bezüglich Biegeradius, Anschlußmöglichkeiten der einzelnen Stationen usw.

Arbeiten am Yellow Cable sollten Sie nur vom Fachmann ausführen lassen, da bei Anschlußfehlern die benachbarten Teile des Netzes betroffen werden. Außerdem wird für den Anschluß des MAU ein Spezialwerkzeug benötigt.

Thinwire-Ethernet (Cheapernet), 10Base2

Eine weitere Abweichung vom ursprünglichen Standard besteht im Einsatz dünnerer Koaxialkabel. Diese haben zwar eine höhere Dämpfung und geringere Störfestigkeit als das yellow cable, sind aber für kleinere Netze vollkommen ausreichend. Sie sind nicht nur billiger (daher auch der Spitzname 'Cheapernet'), sondern auch besser zu verlegen. Bei diesem Netz entfallen auch die externen Transceiver und die Anschlußkabel. Das Kabel wird unmittelbar an der Netzwerkkarte des Rechners vorbeigeschleift und mittels eines BNC-T-Stücks angeschlossen. Dazu muß das Koaxkabel durchtrennt und mit zwei BNC-Steckern versehen werden - das Netz wird also kurzzeitig unterbrochen. Der Transceiver ist mit auf dem Netzwerkinterface integriert. Es handelt sich um ein 50-Ohm-Kabel RG58A/U oder RG58C/U mit einem Durchmesser von 4,7 - 4,9 mm Durchmesser. Die maximale Länge eines Segmentes beträgt 185 m (nicht etwa 200 m, wie die "2" bei 10Base2 vermuten läßt) und es können bis zu 30 Stationen angeschlossen werden, deren Minimalabstand 0,5 m betragen muß. Beim Verlegen des Kabels darf der Biegeradius 5 cm nicht unterschreiten. Durch geeignete Repeater können Standard-Ethernet-Segmente mit dem Cheapernet verbunden werden.

Die 50-Ohm-Abschlußwiderstände sind in BNC-Stecker integriert und werden bei den beiden äußeren Stationen direkt auf das T-Stück gesetzt. Ein Defekt im Kabel, das ja an allen Stationen über die T-Stücke angeschlossen ist, betrifft somit auch alle Stationen.

Das direkten Vorbeischleifen des Kabels am Interface ist für das 10Base2-Interface zwingend notwendig, ein Verlängern des T-Stückes mit einer 'Stichleitung' ist aufgrund der Funktionsweise des Transceivers nicht möglich. Wenn man versuchen würde, einen 10Base2-Anschluß durch eine Stichleitung zu verlängem, wäre die saubere Ausbreitung der Welle nicht mehr gewährleistet und Reflexionen am Anfang und Ende der Stichleitung die Folge.

Den Nachteil des Vorbeischleifens macht das 10Base2-Kabel dadurch wett, daß es bei deutlich geringerem Preis einfacher zu verlegen ist als das herkömmliche Ethernet. Moderne Netzwerkkarten bieten übrigens Anschlußmöglichkeiten für Transceiver-Kabel (also konventionelles Ethernet), für BNC-T-Stücke (10Base2) und für 10BaseT-Kabel (siehe unten) und sind standardmäßig mit einem OnBoard-Transceiver ausgestattet. Damit ist eine große Flexibilität in der Installation gegeben, es muß lediglich auf der Netzwerkkarte die gewünschte Konfiguration eingestellt werden.

Anschluß der Arbeitsplätze an einen BNC-Strang

Die Ausführung eines Netzwerksegmentes mit BNC-Kabeln ist wesentlich kostengünstiger als mit Yellow-Cable. Das BNC-Kabel wird an einen BNC-Hub o. ä. angeschlossen welcher selbst beispielsweise am Yellow-Cable angeschlossen ist.

Das oben erwähnte T-Stück wird direkt an der Netzwerkkarte angeschlossen, die im Rechner eingebaut ist. Sollte es sich um den ersten bzw. letzten Rechner im Segment handeln, so wird dieser auch mit einem T-Stück angeschlossen. Jedoch wird hier der freibleibende Anschluß durch einen 50 Ohm-Abschlußwiderstand bestückt. Der Kabelanfang und das Kabelende müssen jeweils mit einem 50 Ohm Abschlußwiderstand abgeschlossen werden.

Die Verlängerung der einzelnen Segmente erfolgt mit Repeatern. Sie werden als Signalverstärker zwischen die einzelnen Segmente geschaltet. Mittels Multiportrepeatern kann man das Netzwerk an diesen Stellen auch aufsplitten und in verschiedene Einzelsegmente aufteilen. Allerdings sollte immer darauf geachtet werden, daß bei einer solchen Installation nicht zu viele Arbeitsplätze angeschlossen werden. Jede Arbeitsstation bedeutet zusätzliche Netzlast. Je geringer die Netzlast ist, desto höher ist die Arbeitsgeschwindigkeit des Netzwerkes.

BNC-Netz mit eigenem Server

Bei den beiden vorgenannten Versionen sind die Installationen abhängig von einem abgesetzten File-Server. Er liefert die notwendige Netzwerksoftware und evtl. die benötigten Programme. Soll nun aber ein bestimmter Bereich des Netzes unabhängig vom File-Server betrieben werden, so ist es unerläßlich, einen Server nur für diesen Bereich zu beschaffen.

Allerdings ist die BNC-Verkabelung ein aussterbender Standard, da man mit dieser Technik bereits an die Grenzen des technisch Möglichen angelangt ist. Die Übertragungsgeschwindigkeit von 10 Mbit/Sek kann hier nicht überschritten werden kann.

Twisted-Pair, 10BaseT

Twisted-Pair ist ein vieradriges, paarweise verdrilltes Kupferkabel, bei dem zwischen Sender und Empfänger für jede Übertragungsrichtung zwei Kupferadern genutzt werden. Die typische Dicke der Adern beträgt 0,5 oder 0,6 mm. Die maximale Uebertragungslänge variiert mit der Dämpfung und ist abhängig davon, ob die Drähte abgeschirmt sind oder nicht. Das Twisted-Pair-Kabel eignet sich für verschiedene Uebertragungsmethoden wie Token Ring und Ethernet. Bei einer Datenrate von 10 - 100 MBit/s kann ein Twisted-Pair-Kabel bis zu 100 m lang sein. Die Mindestlänge des Kabels beträgt 0,6 m. Das Kabel verbindet genau zwei Stationen miteinander.

Zum Anschluß mehrerer Stationen müssen sogenannte Hubs eingesetzt werden, es lassen sich dann bis zu 1024 Stationen miteinander koppeln. Als Verbinder kommen normalerweise RJ-45-Stecker (Western-Stecker) und -Dosen zum Einsatz. Auch hier werden wieder Differenztreiber und -empfangsverstärker eingesetzt. Der Pegel wechselt zwischen -2,5 V und +2,5 V.
Mit der Twisted-Pair-Verkabelung hielt auch eine kaum überschaubare Anzahl unterschiedlicher Kabelvarianten Einzug in die Datentechnik. UTP, FTP, S/UTP, S/STP oder ITP beschreiben den Kabelaufbau, CAT 3, 5 oder 7 beschreiben die Kategorie hinsichtlich der Anforderung der Kabel und Steckverbinder. Die Kabelklasse (A - 100 kHz, B - 1 MHz, C - 16 MHz, D - 100 MHz, E - 300 MHz, F - 600 MHz) definiert die Anforderungen hinsichtlich der Übertragungsbandbreite.

Die Bauart der Kabel hat einen ganz wesentlichen Einfluß auf die Störteistungsunterdrückung und damit die Störsicherheit der Kabel. Während UTP-Kabel eine typische Störteistungsunterdrückung von 40 dB haben, erreichen S/STP-Kabel Werte bis zu 90 dB.

Die Preisunterschiede zwischen Cat-3-Kabeln und Cat-5-Kabeln ist so gering, daß es sich bei Neuinstallation auf jeden Fall empfiehlt, Cat-5-Kabel einzusetzen - schon, um mit 100 MBit/s arbeiten zu können.

Die konventionelle Twisted-Pair-Ethernet-Verkabelung verwendet RJ-45-Steckverbinder. Auch hier gibt es die unterschiedlichsten geschirmten und ungeschirmten Ausführungen. Sie sind für den industriellen Einsatz nur teilweise geeignet. Von den acht Leitungen des RJ45-Steckers werden nur vier verwendet:

PinSignal
1Sendesignal +
2Sendesignal -
3Empfangssignal +
6Empfangssignal -

Zwischen Rechner und Hub verbindet das Kabel die beiden Stecker 1:1. Bei speziellen Kabeln für die direkte Verbindung zweier Computer oder für das Kaskadieren von Hubs müssen die Leitungen gekreuzt werden. Die Verbindung ist dann:

Pin
(Signal)
  Pin
(Signal)
1 (TX+) - 3 (RX+)
2 (TX-) - 6 (RX-)
3 (RX+) - 1 (TX+)
6 (RX-) - 2 (TX-)

Twisted-Pair-Verkabelung

Wie gesagt, verlegt man pro Rechner ein eigenes Kabel. Während BNC-Netze eine Bus-Struktur haben, zeichnen sich Twisted-Pair-Netze durch eine Baumstruktur aus. Die einzelne Kabellänge zu einem Rechner darf 100 m nicht überschreiten. Die Anzahl der im Netz verfügbaren Rechner ist abhängig von den eingesetzten Repeatern, die hier "Hub" heißen (4-Port, 8-Port; usw.).

AUI-Kabel (Transceiver-Kabel)

An einen MAU kann über ein maximal 50 m langes AUI-Kabel (Impedanz 100 Ohm) eine Ethernet-Station angeschlossen werden, z. B. eine Workstation, ein Terminalserver oder ein PC mit Ethernet-Einschubkarte. Das Kabel bietet die nötige Bewegungsfreiheit bei dem doch recht sperrigen "yellow cable". Im Transceiver-Anschlußkabel existieren zwei Leitungspaare für die beiden Senderichtungen. Der eigentliche Sender ist im wesentlichen eine Stromschleife, die zirka 65 mA treibt. Der Empfänger realisiert einen hochohmigen Abgriff des Signals vom Kabel, damit das Signal auf der Leitung nicht zu stark gedämpft wird. Weitere Leitungen liefern Informationen über Kollisionen. Zusätzlich erfolgt über das Kabel auch noch die Stromversorgung des Transceivers. Die Verbindung zum Transceiver bzw. zum Ethernet-Contoller erfolgt über 15polige SUB-D-Stecker. Das Kabel trägt die Stecker an den Netzkomponenten sind die Buchsen angebracht. Die Belegung der Stecker ist so gehalten, daß übereinanderliegende Pins jeweils die zueinander inversen Signale leiten:

PinSignal PinSignal
1 Schirm für Kollisionserkennung   
2 Kollisionserkennung + 9 Kollisionserkennung -
3 Sendedaten + 10 Sendedaten -
4 Schirm für Empfangsdaten 11 Schirm für Sendedaten
5 Empfangsdaten + 12 Empfangsdaten -
6 Masse 13 + 12 bis 15 V DC
7 Control Out + 14 Schirm für Stromversorgung
8 Schirm für Control Out 15 Control Out -

Lichtwellenleiter

Seit einiger Zeit werden Netzwerkleitungen teilweise als Lichtwellenleiter verlegt. Der zusätzliche Aufwand zum Konvertieren von Strom in Licht und zurück lohnt sich. Der Hauptvorteil liegt in der sehr hohen Übertragungskapazität der durchsichtigen Faser, die bis in den Bereich von GBit/s reicht. Die Datenübertragung via Lichtsignal läßt sich außerdem durch elektrische und elektromagnetische Störungen kaum beeinträchtigen. Dadurch ist das Glasfaserkabel besonders für die Datenübertragung in elektrisch verseuchten Räumen wie zum Beispiel einer Maschinenhalle geeignet. Auch spielt die schon beschriebene Problematik des sich unweigerlich immer weiter verschlechternden Rauschabstandes keine Rolle mehr. Doch ganz so einfach ist die Datenübertrag via Lichtwellenleiter (LWL) auch nicht. Die Eigenschaften des Leiters hängen vom geometrischen Aufbau und den physikalischen Eigenschaften des verwendeten Materials ab. Physikalische Grundlage des LWL ist das Prinzip von Brechung und Reflexion. Allgemein bekannt ist das Brechungsgesetz: Licht wird, wie das Bild zeigt, beim Übergang von einem optisch dichteren in ein optisch dünneres Medium vom Einfallslot weg gebrochen.

Die Ursache dafür liegt in der sich ändernden Ausbreitungsgeschwindigkeit. Diese hat in jedem Medium einen anderen Wert. In einem optisch dichteren Medium bewegt sich Licht langsamer fort als in einem optisch dünneren. Das Verhältnis der Lichtgeschwindigkeit c in Vakuum zur Lichtgeschwindigkeit v in einem anderen Medium ergibt die Brechzahl:

n = c/v

Typische Werte für die Brechzahl sind:
für Glas etwa 1,5,
für Wasser 1,33 und
für das Vakuum 1.

Bei jedem Medienübergang wird ein Teil des Lichts reflektiert je stumpfer der Einfallswinkel, desto stärker die Reflexion. Der Reflexionsgrad hängt vom Unterschied der beiden optischen Dichten und vom Einfallswinkel ab. Erreicht der Einfallswinkel einen kritischen Wert, gelangt überhaupt kein Licht aus dem Medium mit der höheren Brechzahl heraus. Auf dieser Totalreflexion beruht das Prinzip des Lichtwellenleiters. Die Aufgabe des Leiters besteht ja darin, das Licht verlustlos und ohne Impulsverformung über lange Strecken zu transportieren. Da sich Licht aber nach allen Seiten ausbreitet, muß man einen Käfig bauen, der das Licht im Leiter hält. Denn bei jeder Biegung des Kabels würde sonst nur ein Bruchteil des ursprünglichen Lichts im Kabel verbleiben und eine längere Übertragungsstrecke wäre völlig unmöglich. Deshalb konstruiert man den Lichtwellenleiter als optische Röhre. Im Innern der Röhre kann sich das Licht ungehindert fortpflanzen und an den Wänden wird es total reflektiert. So wird der Lichtstrahl gezwungen, sich innerhalb der Faser fortzubewegen.

Der LWL mit dem einfachsten Aufbau besteht aus einem konzentrischen optischen Kern mit einer hohen Brechzahl n1, der mit einem optischen Mantel kleinerer Brechzahl n2 versehen ist. Licht, das in einem gewissen Winkelbereich in den LWL eintritt, wird durch fortlaufende Totalreflexion an der Grenze Kern/Mantel weiterbefördert.

Neben dem reinen Transport ist die Verformung, die die Lichtimpulse während der Leitung erleiden, von Bedeutung. Sehen Sie sich dazu das Einspeisen des Lichts in den LWL etwas genauer an: Trifft das Licht in einem Winkel nahe dem maximalen Einfallswinkel für den Lichtleiter auf, wird es sehr oft im LWL reflektiert. Es heißt dann Licht hohen Modes. Entsprechend heißt Licht, welches in relativ guter Übereinstimmung mit der optischen Achse des LWL eintrifft, Licht niedrigen Modes. Licht hohen Modes legt insgesamt einen längeren Weg im Kabel zurück und benötigt dadurch mehr Zeit für den Durchlauf. Fällt nun Licht mit nicht genau definiertem Winkel in den LWL ein, kommt es bis zum Ausgang wegen der unterschiedlichen Laufzeiten für jeden Einfallswinkel zu einer Dehnung des Lichtimpulses. Dieser unschöne Effekt, die Dispersion, verbreitert die Signalimpulse und beschränkt damit die erreichbare Übertragungsrate.

Abhilfe schafft ein nach außen hin stetig abnehmender Brechungsindex. Dadurch gleichen sich die Geschwindigkeiten und Laufzeiten für die verschiedenen Einfallswinkel bei genügender Kabellänge wieder aus. Wegen des stetigen Übergangs von Kern zu Mantel werden diese Leiter Gradientenprofilfasern genannt. Eine noch geringere Dispersion liefern die Monomode-Fasern. Im Gegensatz zu den Multimode-Fasern leiten sie nur Licht einer bestimmten Wellenlänge. Ihr Kerndurchmesser ist so klein, daß sich das Licht fast nur noch entlang der Längsachse ausbreiten kann. Mit diesen Monomode-Fasern sind also die steilsten Flanken und damit die größten Übertragungsraten zu erzielen.

Die optischen Sender und Empfänger (meist Laserdioden) müssen genau auf die Faser abgestimmt sein, um verlustarm und reflexionsfrei übertragen zu können. Ein großes technisches Problem beim Verlegen von LWL ist immer noch der Übergang von einem Leiterstück auf ein anderes, das sogenannte 'Spleißen'. Im Gegensatz zum elektrischen Leiter, bei dem eine Klemm- oder Lötverbindung ohne große Sorgfalt genügt, müssen die Glasfasern genau in der optischen Achse plan miteinander verschweißt werden. Unter Laborbedingungen stellt das natürlich längst kein Problem mehr dar, aber im mobilen Einsatz sieht das schon etwas anders aus.

Beim sogenannten 'Spleißen' von Glasfaserkabeln gibt es zahlreiche Fehlermöglichkeiten. Das beginnt nach dem Entfernen des Sekundärschutzes mit mangelhaftem Reinigen der Faser. Weitere Fehlermöglichkeiten sind zu sparsame Verwendung des Leims zum Verkleben der Faser im Kontaktkörper oder zu wenig Sorgfalt beim anschließenden Schleifen der Kontaktfläche. Das beste 'Meßinstrument' ist hier eine Lupe mit mindestens 10-facher Vergrößerung. Man leitet sichtbares Licht in die Faser und prüft die Fläche auf Verunreinigungen oder Kratzer. Zum Reinigen der Kontaktfläche verwendet man nicht-denaturierten reinen Alkohol.

Der Siegeszug der Glasfaser im Bereich der Kommunikationstechnik ist nicht aufzuhalten. Die Anwendungen in der Computertechnik verlangen immer schnellere Verbindungen zwischen Computern und auch anderen Geräten. Diese Forderung kann langfristig nur die Glasfaser erfüllen.

10Base-F Ethernet

Schon früh wurden Glasfasern als Link-Segmente für die Verbindung zweier Repeater-Komponenten standardisiert (Fiber Optic Inter Repeater Link - FOIRL). Unter Beachtung der Repeaterregel und des Laufzeitverhaltens lassen sich so entfernte Segmente untereinander verbinden. Dieser Standard wurde mittlerweile so erweitert (10Base-F), daß sich auch Stationen über Glasfasern an Glasfaserrepeater anschließen lassen. Die Konfiguration entspricht etwa der von 10Base-T. Für die Verbindung werden sind sogenannte ST-Stecker vorgeschrieben. Link-Segmente mit FOIRL-Geräten können bis zu 1000 m lang sein und Segmente mit 10Base-F Geräten bis zu 2000 m.

Verkabelungs-Trends

Derzeit rüsten viele Unternehmen ihr Ethernet von einer Koax- auf die strukturierte Twisted-Pair-Verkabelung um. Nicht selten ist danach die Enttäuschung groß: Die teure Maßnahme allein erhöht die Geschwindigkeit des Netzes überhaupt nicht, allenfalls dessen Zuverlässigkeit - dabei scheint doch jeder Anwender nun seinen ganz privaten Netzanschluß zu haben. Der Grund dafür liegt im Ethernet-Zugriffsverfahrens CSMA/CD. Herkömmliche 'Repeating Hubs' im sternverkabelten Ethernet sorgen dafür, daß alle Stationen jedes Paket empfangen, so als ob sie noch an ein gemeinsames Koax-Kabel angeschlossen seien. Das gewohnte Ethernet kann mit wenigen Mitteln beschleunigt werden. Der erste und meist teuerste Schritt auf diesem Weg ist die Neuverkabelung mit Twisted-Pair-Leitungen. Danach können weitere Maßnahmen ergriffen werden. Die klassische Maßnahme, das 'Bridging', wird auch in Koax-Netzen häufig eingesetzt und lebt heute in den sogenannten 'Multi-Segment-' oder auch 'Switching-Hubs' weiter. Das Aufteilen eines Netzes in mehrere Teilnetze, auch 'Collision Domains' genannt, läßt nicht mehr jedes Datenpaket zu jeder Station gelangen; es können so viele Transaktionen gleichzeitig stattfinden, wie Collision Domains im Netz vorhanden sind - im Extremfall (Switch) ist jeder Hub-Anschluß einer eigenen Collision Domain zugeordnet. An die Switch-Anschlüsse können in der Regel wieder gewöhnliche Repeating Hubs angeschlossen werden; Switching kann so nach und nach im Netz eingeführt werden, um die Collision Domains immer weiter zu verkleinern - bis im Idealfall jedem Rechner ein privates Segment zur Verfügung steht.

An Switches kann heute auch die Ethernet-Industrie noch richtig Geld verdienen; sie kosten ca. 500 - 1000 Mark je Ethernet-Port. Damit der Switch-Kauf nicht zur Fehlinvestition wird, sollte ihm eine Analyse des Datenverkehrs auf dem Netz vorausgehen. In einem Peer-to-Peer-Netz (z. B. Unix oder auch Windows 95/Windows NT) ohne zentrale Server genügt meistens ein reiner 10Base-T-Switch. Gibt es einige, wenige Server (z. B. Novell) bringt einfaches Bridging oder Switching keinen Gewinn. In solch serverorientierten Umgebungen sind zusätzliche Maßnahmen erforderlich. So kann zum Beispiel der Server über mehrere Ethernet-Segmente parallel mit dem Switch verbunden werden, so daß der Datenverkehr zwischen Server und Netz gebündelt wird. Es gibt auch Switches mit einem oder mehreren Fast-Ethernet-Anschlüssen. Diese können an den oder die Server angeschlossen werden, um alle Anwender im Netz deutlich schneller mit Daten zu versorgen - ohne daß deren LAN-Adapter auch nur berührt werden müßten.

Da sich Twisted-Pair-Kabel mehr und mehr durchsetzen, sollte man auf jeden Fall bei der Neuverkabelung gleich UTP-5-Kabel verwenden, um für die Datenrate von 100 MHz gerüstet zu sein. Leider ist der verwendete RJ45-Stecker relativ filigran. Neben der Zerbrechlichkeit der Stecker kommt es bei Hochgeschwindigkeitsnetzen zu Problemen: Die Drähte und Kontakte werden über eine kleine Strecke parallel geführt, wodurch die Wirkung der Twisted-Pair-Kabel aufgehoben wird. Ein weiterer Kritikpunkt an der RJ45-Technik ist die Einheitlichkeit der Dosen. Der Anwender am Arbeitsplatz kann nicht erkennen, welchem Dienst die Dose zugeordnet ist (Netz, analogens Telefon, ISDN, etc.). Selbst Farbkennzeichnung oder Beschriftung hindert viele Leute nicht daran, 'es mal an der anderen Dose zu versuchen'. Und da kann die Rufspannung analoger Telefone schon einmal einen Netzwerkadapter 'killen'.

10 MBit/s (IEEE 802.3) und 100 MBit/s (IEEE 802.3u) verwenden eine Halbduplex-Übertragung über zwei Aderpaare. Bei einer Migration von 10 auf 100 MBit/s bleibt zumindest die Infrastruktur des Kabelnetzes bestehen. Demgegenüber setzt Gigabit-Ethernet (IEEE 802.3ab) auf eine Vollduplex-Übertragung über alle vier Paare. Zwar ermöglicht diese Technik die Verwendung der eigentlich nur bis 100 MHz spezifizierten CAT-5-Kabel, dazu müssen die Komponenten allerdings anders beschaltet werden.

Weitere Infos dazu im Kapitel Tips zur Twisted-Pair-Verkabelung.

Zum Inhaltsverzeichnis        Zum nächsten Abschnitt


Copyright © Prof. Jürgen Plate, Fachhochschule München